Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros

Base de dados
Tópicos
Tipo de documento
Intervalo de ano
1.
Sci Total Environ ; 862: 160700, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2150569

RESUMO

In this work, we report an impedimetric system for the detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein. The sensing platform is based on recombinant Spike protein (SCoV2-rS) immobilized on the phytic acid doped polyaniline films (PANI-PA). The affinity interaction between immobilized SCoV2-rS protein and antibodies in the physiological range of concentrations was registered by electrochemical impedance spectroscopy. Analytical parameters of the sensing platform were tuned by the variation of electropolymerization times during the synthesis of PANI-PA films. The lowest limit of detection and quantification were obtained for electropolymerization time of 20 min and equalled 8.00 ± 0.20 nM and 23.93 ± 0.60 nM with an equilibrium dissociation constant of 3 nM. The presented sensing system is label-free and suitable for the direct detection of antibodies against SARS-CoV-2 in real patient serum samples after coronavirus disease 2019 and/or vaccination.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Anticorpos , Técnicas Eletroquímicas , Eletrodos
2.
Biosensors (Basel) ; 12(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1969093

RESUMO

In this research, we assessed the applicability of electrochemical sensing techniques for detecting specific antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins in the blood serum of patient samples following coronavirus disease 2019 (COVID-19). Herein, screen-printed carbon electrodes (SPCE) with electrodeposited gold nanostructures (AuNS) were modified with L-Cysteine for further covalent immobilization of recombinant SARS-CoV-2 spike proteins (rSpike). The affinity interactions of the rSpike protein with specific antibodies against this protein (anti-rSpike) were assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. It was revealed that the SPCE electroactive surface area increased from 1.49 ± 0.02 cm2 to 1.82 ± 0.01 cm2 when AuNS were electrodeposited, and the value of the heterogeneous electron transfer rate constant (k0) changed from 6.30 × 10-5 to 14.56 × 10-5. The performance of the developed electrochemical immunosensor was evaluated by calculating the limit of detection and limit of quantification, giving values of 0.27 nM and 0.81 nM for CV and 0.14 nM and 0.42 nM for DPV. Furthermore, a specificity test was performed with a solution of antibodies against bovine serum albumin as the control aliquot, which was used to assess nonspecific binding, and this evaluation revealed that the developed rSpike-based sensor exhibits low nonspecific binding towards anti-rSpike antibodies.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanoestruturas , Anticorpos , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Humanos , Imunoensaio/métodos , Limite de Detecção , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
3.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1917510

RESUMO

The serologic diagnosis of coronavirus disease 2019 (COVID-19) and the evaluation of vaccination effectiveness are identified by the presence of antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this paper, we present the electrochemical-based biosensing technique for the detection of antibodies specific to the SARS-CoV-2 proteins. Recombinant SARS-CoV-2 spike proteins (rSpike) were immobilised on the surface of a gold electrode modified by a self-assembled monolayer (SAM). This modified electrode was used as a sensitive element for the detection of polyclonal mouse antibodies against the rSpike (anti-rSpike). Electrochemical impedance spectroscopy (EIS) was used to observe the formation of immunocomplexes while cyclic voltammetry (CV) was used for additional analysis of the surface modifications. It was revealed that the impedimetric method and the elaborate experimental conditions are appropriate for the further development of electrochemical biosensors for the serological diagnosis of COVID-19 and/or the confirmation of successful vaccination against SARS-CoV-2.


Assuntos
Técnicas Biossensoriais , COVID-19 , Animais , Anticorpos , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Técnicas Eletroquímicas/métodos , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
4.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1613827

RESUMO

Monitoring and tracking infection is required in order to reduce the spread of the coronavirus disease 2019 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, the development and deployment of quick, accurate, and sensitive diagnostic methods are necessary. The determination of the SARS-CoV-2 virus is performed by biosensing devices, which vary according to detection methods and the biomarkers which are inducing/providing an analytical signal. RNA hybridisation, antigen-antibody affinity interaction, and a variety of other biological reactions are commonly used to generate analytical signals that can be precisely detected using electrochemical, electrochemiluminescence, optical, and other methodologies and transducers. Electrochemical biosensors, in particular, correspond to the current trend of bioanalytical process acceleration and simplification. Immunosensors are based on the determination of antigen-antibody interaction, which on some occasions can be determined in a label-free mode with sufficient sensitivity.


Assuntos
Técnicas Biossensoriais/métodos , Teste para COVID-19/métodos , SARS-CoV-2/química , Humanos , Técnicas de Diagnóstico Molecular , Nanoestruturas , SARS-CoV-2/isolamento & purificação , Testes Sorológicos
5.
Micromachines (Basel) ; 12(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1167660

RESUMO

The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was proclaimed a global pandemic in March 2020. Reducing the dissemination rate, in particular by tracking the infected people and their contacts, is the main instrument against infection spreading. Therefore, the creation and implementation of fast, reliable and responsive methods suitable for the diagnosis of COVID-19 are required. These needs can be fulfilled using affinity sensors, which differ in applied detection methods and markers that are generating analytical signals. Recently, nucleic acid hybridization, antigen-antibody interaction, and change of reactive oxygen species (ROS) level are mostly used for the generation of analytical signals, which can be accurately measured by electrochemical, optical, surface plasmon resonance, field-effect transistors, and some other methods and transducers. Electrochemical biosensors are the most consistent with the general trend towards, acceleration, and simplification of the bioanalytical process. These biosensors mostly are based on the determination of antigen-antibody interaction and are robust, sensitive, accurate, and sometimes enable label-free detection of an analyte. Along with the specification of biosensors, we also provide a brief overview of generally used testing techniques, and the description of the structure, life cycle and immune host response to SARS-CoV-2, and some deeper details of analytical signal detection principles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA